¹⁸F-APN-1607: A Promising PET Tracer for Tauopathies of All Isoform Repeat Types

Brad Navia, MD, PhD Chief Medical Officer Aprinoia Therapeutics

Disclosures

A P R I **N O I R**

• Employee and a share holder of Aprinoia Therapeutics

APN-1607: A Promising PET Tracer for Tauopathies of All Isoform Types

APN-1607: A Promising PET Tracer for Tauopathies of All Isoform A P R I N O I R Types

- Only one tau PET tracer approved- Tauvid for the diagnosis of AD
- Several second-generation tau tracers are in development
- The development of a 4R tau tracer remains a significant unmet need
 - Early diagnosis and differentiation from other disorders
 - Patient selection for therapeutic trials and monitoring for treatment response
- Makoto Higuchi and colleagues, QST, Japan developed ¹⁸F-APN-1607 (APN-1607, Florzolotau)
 - World-wide license granted to APRINOIA Therapeutics
 - Large body of data supports APN-1607 can detect 3R/4R tau fibrils
 - APN-1607 may provide a useful PET tau tracer for the diagnosis of a broad range of 3R and 4R Tauopathies

Clinically Available Tau PET Probes

A P R I **N O I R**

Courtesy Makoto Higuchi

APN-1607: A First- in- Class 3R/4R Tau Tracer

A P R I **N O I R**

Challenges with Current PET Tracers¹

¹⁸F-flortaucipir (Tauvid®, Lilly)
FDA-approved in 2020 • Off-target binding (MAO-B)

Reduced off-target binding,

similar chemistry as Tauvid®

but limitations remain due to

- Poor early detection of AD
- Limited use in non-AD tauopathies

¹⁸**F-PI-2620** (Life Molecular Imaging)

¹⁸F-RO-948 (Roche)

¹⁸F-MK-6240 (Merck) ¹⁸F-PI-2620 (Life Molecular Imaging)* Being investigated for 4R tauopathies, however data is inconsistent

Useful in AD

* Published data in PSP

1 Jie et al. FDA-Approved PET Tracer for Imaging Tau Pathology in Alzheimer's Disease. Pharmaceuticals 2021, 14, 110.

2 Shi, Y., et al. Cryo-EM structures of tau filaments from Alzheimer's disease with PET ligand APN-1607. Acta Neuropathol 141, 697–708 (2021).

¹⁸**F-APN-1607***

Clinically administered in >3000 subjects;
 Phase 3 in China and Phase 2 in the US

• **Selectivc**, No MAO-A/B binding

- Binds to 4R tau, so it can be used in preclinical models, e.g., rTg4510 mouse model
 - Only tau tracer with CryoEM structure of APN-1607 bound to AD tau available, allowing further structure-based drug design²
 - Tau tracer with wide utility in AD and many non-AD tauopathies, including PSP, CBS, bvFTD, PNFA, & Pick's

useful in all tauopathies

*APN-1607 is light sensitive, <500nm; requires special lighting conditions

APN-1607: Current Development Status

- >3000 individuals have been scanned to date at 15 sites in several countries.
 - Diverse diagnoses:
 - AD spectrum
 - 4R tauopathies (esp. PSP and variants); CBS; also various types of FTD, PiD (3R)
 - CTE
 - Cross-sectional and longitudinal studies
- Sponsored studies:
 - Phase 1 studies in US: favorable dosimetry and test/retest data
 - Phase 2 study in AD (US, Taiwan, Japan)
 - Single Pivotal Phase 3 study in AD (China) for approval
 - PI-initiated studies in Taiwan, Japan, China and Germany; planned in US
 - Single global Phase 3 in PSP planned in US, Canada, EU (UK, Germany), Japan, Taiwan
- PSP: Orphan disorder designation (US)

	Diagnosis	Ν
	Cognitively intact	460
•	MCI	388
	AD	673
-	PSP	471
	FTD	141
-	CBS	70
	PD	73
	MSA	45
	VCI/VaD	80
	Other	392

APN-1607: Cryo-EM Identifies Binding in AD Tau folds

- Cryo-EM to determine the binding sites of the Alzheimer tau folds in PHF and SF
- Two major sites in the β-helix of PHFs and SFs and a third major site in the C-shaped cavity of SFs.
- Binding sites 1 and 2 have Q351 in common, which adopts an extended conformation

Cryo-EM identifies Binding Sites in AD Tau Folds

APN-1607: Nonclinical Profile

A P R I **N O I R**

Postmortem tauopathy brain tissue

- Labels aggregated tau in disease-specific structures (nM affinity in AD, PSP, CBD)
- Kinetics illuminated by 2-photon microscopy
- No significant binding to protein panel in vitro
- No binding to MAO A/B by competition assays

APN-1607: Nonclinical Profile : rTg4510 (4R Tau)

A P R I N O I R

AT8

⁽Weng 2020; data on file)

rTg4510 mouse

- No binding in nTg; detects 4R tau aggregates in Tg, with linear age-related signal increase
- Useful for therapeutics development

Tagai,et al; Neuron, 2021

APN-1607 in AD: Topology and Visualization of Spread

A P R I **N O I R**

APN-1607 in PSP and Correlation with Disease Severity

APN-1607 in **PSP** and **Correlation** with **Disease Severity**

A P R I N O I A

PSP=20, (PSPRS=16) MSA-P=7 PD=10 HC=13

Li, et al Mov Dis,2021

14

APN-1607 in **PSP** and **Correlation** with **Disease** Severity

APN 1607 in PSP: Distribution, Dynamics and Pattern of **Tau Pathology**

PSP=148

Liu, et al, J Nucl Med & Mol Imag 2023

APN 1607 in PSP: Distribution, Dynamics and Pattern of Tau Pathology

Cluster 1: red nucleus, subthalamic nucleus, raphe nuclei, and globus pallidus, Cluster II: thalamus, locus coeruleus, substantia nigra and putamen; Cluster III: dentate nucleus, cerebral white matter, and cortices

Liu, et al: J NuclMed & Mol Imag 2023

Findings and Conclusions

- APN1607 retention starts in subcortical regions.
- The advance of tau accumulation visualized by APN 1607 PET showed a significant correlation with clinical severity
- The distribution and dynamics of tau accumulation in PSP are similar to the reconstructed maps of tau propagation in *postmortem* studies (Kovacs et al, Acta Neuropath, 2020)
- APN-1607 offers promising approach for the diagnosis of PSP and related tauopathies

APN-1607 in FTD: Findings in *Mapt* **Mutation Carriers**

- Study of 7 patients with various *Mapt* mutations (Zhou 2021)
 - Exon 10, 4R tau-associated (6): N279K (4), P301L (1), S305I (1)
 - Non-exon 10, 3R/4R tau-associated: P513A (1)
 - Various ages, phenotypes and diagnoses; MRI, FDG, and DAT profiling
- Baseline APN 1607 PET scans in all subjects; positive signal in phenotype-associated regions
- Follow-up scans in 3 subjects with clinical deterioration after 10-14 months revealed increased signal

One representative patient with *MAPT* mutation (S305I, 4R-tau) Clinical diagnosis: Probable CBS+FTD

APN-1607 in Pathology Confirmed Cases of CBS, PSP and PiD

A P R I N O I A

Tagai et al, 2021

APN-1607 Differentiates Anatomical Patterns Across nonAD Tauopathies O | R

(Tagai, et al 2021)

APN-1607 Can Detect Distinct Anatomical Patterns across Different Tauopathies

(Tagai, 2021)

APN 1607-Phase 3 for PSP First- in- Class 4R Tau Tracer Next Steps

Ζ

Development of APN-1607 for PSP: Path to Approval

- A P R I **N O I R**
- No approved biomarkers for the detection of 4R tau in patients suspected to have PSP
- Published data in approx.180 PSP patients (RS and nonRs) have shown consistent patterns of APN -1607 uptake (e.g., subthalamus) with correlations with clinical severity
- Sensitivities and specificities >85%
- The distribution and dynamics of APN-1607 accumulation in PSP similar to the reconstructed maps of tau propagation in *postmortem* studies (Kovacs et al, Acta Neuropath, 2020)
- FDA issued a "May Proceed" for Phase 3 trial on December 8, 2023, indicating that single pivotal, prospective global Phase 3 study may serve as the primary basis for the approval of APN-1607 as a diagnostic marker for early PSP without pathology confirmation
- ADDF award for Phase 3 Trial, May, 2023
- Visual Read in Development (John Seibyl)
- Fast track designation granted May 8, 2024
- Planned FPI: 4Q,2024

APN-1607 PSP Phase 3: Planned CMO Network and Clinical Site Distribution

APN-1607 Captures Aggregated Tau in Relevant Brain Regions APPRINOIR in AD and non AD Tauopathies

Max

Min

APN 1607 Can Track Disease Progression in AD and PSP

A P R I N O I R

Aging

Alzheimer dementia

Clinical severity

severity

Progressive supranuclear palsy

APN-1607: A Promising PET Tracer for Tauopathies of All Isoform A P R I N O I R Types <u>Conclusions</u>

- APN-1607 can detect multiple tau isoforms: AD-type (3R+4R), PSP/CBD-type (4R), PiD-type (3R) and CTE-type (3R +4R) tau aggregates
 - Unlike other PET tau tracers, APN-1607 binds to a groove-like pocket spanning β-sheet stacks in diverse tau filaments
- APN-1607 is widely used globally to aid the diagnosis of various tauopathies, including AD, PSP and FTD
- Emerging data suggests APN 1607 may also be useful in the diagnosis of CTE
- Fast track designation granted to APN 1607 for the PSP program, May 8, 2024
- A single global phase 3 for the approval of APN-1607 as diagnostic marker for early PSP is planned for Q4, 2024

Acknowledgements

- Clinical and Regulatory Teams at Aprinoia Therapeutics and PPD
- Advisors
 - Larry Golbe-Rutgers
 - Irene Litvan-UCSD
 - Tony Lang- U Toronto
 - Huw Morris UCL
 - Gunter Hulinger- Munich
 - Adam Boxer UCSF
 - Tom Beach- Banner Inst.
- John Seibyl and Colleagues at Invicro
- CurePSP
- ADDF

Acknowledgements

A P R I **N O I R**

QST

Makoto Higuchi Kenji Tagai Hironobu Endo Keisuke Takahata Manabu Kubota (Kyoto Univ) Maiko Ono Hiroyuki Takuwa Yuji Nagai Yuhei Takado Ichio Aoki Ming-Rong Zhang

Cambridge University

Yang Shi Alexey G. Murzin Sjors Scheres Michel Goedert

APRINOIA Therapeutics, Inc.

Ming-Kuei Jang Paul Tempest Masaomi Miyamoto Tzu-Chen Yen

Keio University

Yutaka Tomita Norihiro Suzuki Masaru Mimura Daisuke Ito Toshiki Tezuka

University of Freiberg

Joachim Blumberg Phillip Meyer Chang Gung Memorial Hospital, Linko Kun-Ju Lin Jung-Lung Hsu Chin-Chang Huang

Huashan Hospital, Fudan University

Jian Wang Feng-Tao Liu Xin-Yue Zhou