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Introduction: Tau-targeted positron emission tomography (tau-PET) is a potential 
tool for the differential diagnosis of Alzheimer’s disease (AD) and to clarify the 
distribution of tau deposition. In addition to the quantitative analysis of tau-PET 
scans, visual reading supports the assessment of tau loading for clinical diagnosis. 
This study aimed to propose a method for visually interpreting tau-PET using the [18F] 
Florzolotau tracer and investigate the performance and utility of the visual reading.

Materials and methods: A total number of 46 individuals with 12 cognitively 
unimpaired subjects (CU), 20 AD patients with mild cognitive impairment (AD-MCI), 
and 14 AD with dementia (AD-D) patients with both [18F]Florbetapir amyloid PET 
and [18F]Florzolotau tau PET scans were included. Clinical information, cognitive 
assessment, and amyloid PET scan results were recorded. For visual interpretation, a 
modified rainbow colormap was created and a regional tau uptake scoring system 
was proposed to evaluate the degree of tracer uptake and its spatial distribution 
within five cortical regions. Each region was scored on a scale of [0, 2] as compared 
to the background, and that resulted in a global scale range of [0, 10]. Four readers 
interpreted [18F]Florzolotau PET using the visual scale. The global and regional 
standardized uptake value ratios (SUVr) were also calculated for analysis.

Results: The result indicates the average global visual scores were 0 ± 0  in the 
CU group, 3.43 ± 3.35  in the AD-MCI group, and 6.31 ± 2.97  in the AD-D group 
(p < 0.001). The consensus among the four observers on image scores was high 
with an intraclass correlation coefficient of 0.880 (95% CI: 0.767–0.936). The 
average global visual score was significantly associated with global SUVr (r = 0.884, 
p < 0.0001) and with the CDR-sum of box (r = 0.677, p < 0.0001).

Conclusion: The visual reading method generated a visual score of [18F]Florzolotau 
tau-PET with good sensitivity and specificity to identify AD-D or CU individuals 
from the other patients. The preliminary result also showed that the global visual 
scores are significantly and reliably correlated with global cortical SUVr, and 
associated well with the clinical diagnosis and cognitive performance.
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Introduction

The accumulation of β-amyloid (Aβ) plaques and tau-containing 
neurofibrillary tangles is a hallmark of Alzheimer’s disease (AD) 
(Goedert and Jakes, 2005; Hardy, 2006). Previous studies (Arriagada 
et  al., 1992; Braak and Braak, 1995; Cummings et  al., 1996) have 
suggested that both the elevation of Aβ and neurofibrillary tangles are 
related to the severity of dementia in AD patients (Berg et al., 1998; 
Bennett et al., 2004; Nelson et al., 2009). Compared with cortical Aβ 
plaques, the phosphorylated tau aggregated in neurofibrillary tangles 
is more closely related to AD-related cognitive impairment and 
neurodegenerative changes (Duyckaerts et al., 1987; Dickson et al., 
1997; Nelson et al., 2012). Therefore, accurate detection of the tau load 
of living patients is useful not only for establishing AD diagnosis and 
selecting the patient for targeted therapy (Fleisher et al., 2020) but also 
for predicting a patient’s potential for clinical progression. Recent 
advancements in selected tau tracers for PET imaging have facilitated 
the detection and quantification of tau pathology in living patients 
(Okamura et al., 2018).

In recent years, a number of tau tracers have been applied to the 
living human brain, including the first-generation tau tracers 
(Hashimoto et al., 2014; Harada et al., 2015; Betthauser et al., 2017; 
Hsiao et  al., 2017; Stepanov et  al., 2017) and the novel second-
generation tau tracers, such as [18F]RO69558948, [18F]MK6240, and 
[18F]PI2620 (Walji et al., 2016; Declercq et al., 2017). Many studies 
have shown the tau burden measured from the tau PET imaging is 
highly correlated with neurodegeneration in AD (La Joie et al., 2020) 
and also exhibited high accuracy in differentiating AD from normal 
subjects and patients of other neurodegenerative disorders 
(Ossenkoppele et al., 2018; Mueller et al., 2020). Nevertheless, the 
first-generation tau tracers had some limitations, such as “off-target” 
binding; that is, the signal of the tau tracer comes from the binding of 
monoamine oxidase B (MAO-B) (Ng et al., 2017). Furthermore, most 
of these tracers have been found to exhibit strong binding affinity in 
the deep brain nucleus, which does not correspond to areas of high 
density of tangles in AD according to pathological studies (Braak and 
Braak, 1991). Therefore, there is an unmet need in dementia research 
for a tau-imaging agent with low off-target in the brain (Leuzy 
et al., 2019).

A first-generation tau tracer called [11C]PBB3 was developed in 
2014, and shown to be effective in patients with AD and non-AD 
tauopathies for observing tau pathology in preclinical evaluations 
(Hashimoto et al., 2014; Ono et al., 2017). Recently, an 18F-labeled 
PBB3 derivative, [18F]Florzolotau (also known as [18F]APN1607 and 
[18F]PM-PBB3), was developed and shown to improve the imaging 
properties of [11C]PBB3 with broader accessibility and a higher signal-
to-noise ratio for detecting tau pathologies in both human and animal 
studies (Hsu et al., 2020; Su et al., 2020; Lu et al., 2020; Tagai et al., 
2021), and in non-AD tauopathies (Li et al., 2021; Liu et al., 2023).

However, the studies published recently have focused on the 
quantitative analysis of PET scans by tau tracers. While this method 
is suitable for research purposes, it can present challenges for clinical 
practice. Interpretation of visual scans may allow for a wider range of 

clinical applications, facilitate the use of tau PET by physicians, and 
thus may benefit patients. In the present study, we applied the [18F]
Florzolotau tracer (1) to propose a reliable visual rating scale for the 
evaluation of [18F]Florzolotau PET (the visual scale), (2) to evaluate 
the reproducibility and how well the visual scale performs in 
differentiating AD with dementia (AD-D), Alzheimer’s disease with 
mild cognitive impairment (AD-MCI) and cognitively unimpaired 
patients (CU), (3) to study the accuracy of the visual scale compared 
to a quantitative method using SUVr (standard uptake value ratio).

Materials and methods

Ethical statement

The study protocol complied with the tenets of the Declaration of 
Helsinki and was approved by the Institutional Review Board of the 
Chang Gung Memorial Hospital (no: 201801834A0 and 
201801833A0). All patients provided written informed consent to 
be included in the prospective study. All of the data were securely 
protected (by delinking identifying information from the main 
datasets), and access to the information was made available only to 
investigators and analyzed anonymously.

Patients

We conducted the current study as a single-center investigation. 
The ages of all subjects were between 55 and 80 years. Alzheimer’s 
disease with mild cognitive impairment (AD-MCI) was defined as (1) 
amyloid-positive on the [18F]Florbetapir amyloid imaging, (2) clinical 
dementia rating (CDR) scale ≥0.5, and (3) independent daily life 
activities. Alzheimer’s disease with dementia (AD-D) was defined as 
(1) amyloid-positive on the [18F]Florbetapir amyloid imaging, (2) 
CDR scale ≥0.5, and (3) functionally impaired daily life activities. 
Cognitively unimpaired (CU) subjects were defined as (1) amyloid-
negative on the 18F-Florbetapir amyloid imaging, (2) CDR scale = 0, 
and (3) independent daily life activities. Exclusion criteria for all 
subjects were history of other neurological disorders, history of stroke, 
severe progressive or unstable systemic diseases, recent cancer, and 
substance use disorder. Atypical AD patients were also excluded. 
Structural magnetic resonance imaging (MRI), amyloid PET, and tau 
PET scanning were performed in all subjects to fulfill the ATN 
diagnostic framework proposed in the NIA-AA 2018 research criteria 
(Albert et  al., 2011; Jack et  al., 2018). All individuals underwent 
cognitive evaluations, including the mini-mental state examination 
(MMSE), and the CDR scale. For disease severity, the CDR-sum of 
box (SOB) scores was employed. Categorization of subjects was based 
on both clinical presentations and cognitive test performance, and 
reached the consensus after discussion by neurologists, 
neuropsychologists, neuroradiologists, and experts in nuclear 
medicine. In brief, 12 Aβ (−) CU, 20 Aβ (+) AD-MCI, and 14 Aβ (+) 
AD-D subjects were included in this study.
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Image acquisition

Both [18F]Florbetapir and [18F]Florzolotau tracers were prepared 
and synthesized at the cyclotron facility of Chang Gung Memorial 
Hospital. All subjects underwent a 20 min [18F]Florzolotau scan at 
90 min post-injection with an injection dose of 211.8 ± 25.1 MBq. All 
PET scans were performed in a Biograph mCT PET/CT system 
(Siemens Medical Solutions, Malvern, PA), and in a Discovery MI 
PET/CT system (GE Medical Systems, Milwaukee, MI). For the mCT 
PET/CT system, images were reconstructed using a 3-D OSEM 
algorithm of 4 iterations, 24 subsets, and post-smoothing using a 
Gaussian filter of 2 mm FWHM and zoom =3, and with CT-based 
attenuation correction. Scatter and random correction were also 
performed using the correction methods provided by the 
manufacturer. The reconstructed images had a matrix size of 
400 × 400 × 109 and a voxel size of 1.02 × 1.02 × 2.03 mm3. For the 
Discovery MI PET/CT system, images were reconstructed using a 
VPHD algorithm of 4 iterations, 16 subsets with a matrix size 
128 × 128 × 71 and a voxel size 2 × 2 × 2.79 mm3. The PET images were 
motion-corrected and averaged into 20 min static for later processing. 
Details on [18F]Florbetapir-PET acquisition and processing were 
described previously (Hsiao et al., 2013). Amyloid-PET positivity was 
evaluated by an experienced nuclear medicine specialist based on the 
visual assessment criteria for Florbetapir as described in the published 
guideline (Yang et al., 2012). The tau PET images were preprocessed 
with pre-optimized scanner-specific filters derived similarly as in Joshi 
et al.(2009) and from a previous phantom study so that all images from 
different scanners resulted in a unified resolution for further analysis.

For volumes of interest (VOI) delineation in the quantitation step, 
a T1-weighted magnetic resonance imaging (MRI) scan was acquired 
on a 3-T Siemens Magnetom TIM Trio scanner (Siemens Medical 
Solutions, Malvern, PA) for each subject.

Imaging visual interpretation

Colormap adjustment
To consider the differential change of tau activity from normal, a 

colormap for visual reading modified from a rainbow colormap was 
created. The design of the color map consisted of three zones including 
background (deep blue), reference (green), and signal (red to yellow). 
To provide a guideline for setting up the colormap for the reference 
zone, the upper margin (or the center of the colormap) was initially 
set to mean + 2 standard deviations (SD) intensity of a normal group 
from a separate cohort (n = 42, from our previous studies), and this is 
approximately equal to 1.85 ×  Icrus (where Icrus indicates the mean 
intensity within the inferior cerebellar cortex for each subject). The 
color scale’s maximum was initially set to 2 times the upper margin of 
the reference zone (thus approximately equal to 3.7 × Icrus for each 
subject). Note that the above procedure in adjusting the colormap for 
each subject is simply applied as a starting point for a convenient 
colormap adjustment. For visual interpretation, the image was first 
loaded in transverse sections starting from the cerebellum to the 
vertex. Finally, the color scale’s maximum was adjusted to ensure the 
green color (reference zone) covered the whole cerebellum. From the 
above procedure, the result roughly displayed the signal in red to 
yellow color (signal zone) indicating regions with intensity levels 
approximately two standard deviations above the mean value of the 
cerebellar cortex derived from a separate normal cohort as described.

Regional tau uptake visual scoring
The regional tau uptake scoring system in this work is modified 

from a previous study (Sonni et al., 2020) and developed based on the 
degree of tracer uptake in the regional and spatial distribution within 
the cortical area. The regions for visual reading including the 
temporal, parietal, frontal, precuneus, and occipital regions were 
selected based on our previous work (Hsu et al., 2020). Each region 
was scored on a 0 to 2 scale (0: no uptake, 1: mild uptake, 2: intense 
uptake) as compared to the background, and this resulted in a global 
scale range of 0–10. Note that a regional score of 0 is for the regional 
tau uptake (green color) lower than or equal to the background and 
1 is for uptake only affecting a portion of the region or less than 50% 
area (total area on both sides is used as the denominator), while a 
score of 2 is for greater uptake affecting most of the region or more 
than 50% of the region. Specifically, the visual scoring system in this 
study considers the percentage of uptake from the regions of interest 
on both sides of the brain as a whole. As shown in Figure 1, examples 
of different regional and global scoring results were illustrated for 
representative tau images of CU, AD-MCI, and AD-D with different 
uptake levels on regional scales.

Imaging quantitative analysis

All of the image data was processed and analyzed using the 
multimodality program PMOD (version 4.2, PMOD Technologies 
Ltd., Zurich, Switzerland). Images were spatially normalized into 
Montreal Neurological Institute space aided by individual MRI as 
described in previous work (Hsu et al., 2020). All VOIs modified from 
the automated anatomic labeling (AAL) atlas were applied for 
computing regional SUVr in comparison with the visual score 
including temporal, parietal, frontal, precuneus, occipital regions and 
the inferior cerebellar cortex (crus) reference region. After spatial 
normalization, we calculated SUVr images by referencing the inferior 
cerebellar cortex. There images were then used for further quantitative 
analysis. In addition to regional SUVr, a global SUVr was also 
calculated by taking the mean SUVr within the cortex area including 
temporal, frontal, parietal and occipital regions.

Statistical analysis

Differences between groups were assessed with one-way ANOVA 
tests followed by Tukey post hoc tests for continuous variables, and 
Pearson’s chi-square test for categorical variables. Intraclass correlation 
coefficients (two-way random model, absolute agreement, single 
measure) were used to evaluate inter-reader agreement on the global 
visual scores. Pearson’s correlation coefficients were used to analyze 
the correlations between pairs of continuous variables. The statistical 
significance was set at p < 0.05 (two-tailed) for all analyses.

Result

Patient characteristics

The basic characteristics of the 46 individuals stratified by 
clinical diagnoses are presented in Table 1. We also conducted 
post-hoc pair-wise comparisons for each pair of groups on their 
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characteristics and the associated global visual score, and the 
result was shown in the Supplementary Table S3. There were no 
significant differences in sex or years of education among the 
groups. The CU group was significantly younger (p  = 0.004 
compared to AD-MCI and p = 0.045 compared to AD-D), showed 
no evidence of amyloid deposition from amyloid PET images, 
and performed better on each neuropsychological examination 
(p < 0.001 for MMSE, CDR, and CDR-SOB) compared to both 
AD-MCI and AD-D groups. The AD-D group showed borderline 
or significant underperformance compared to the AD-MCI 
group on each neuropsychological examination (p = 0.066 for 
MMSE, p  < 0.001 for CDR and CDR-SOB). No patients were 
diagnosed with other forms of dementia, such as frontotemporal 
dementia and dementia with Lewy bodies.

Visual assessment

A comparison of clinical subgroups stratified by clinical diagnosis 
showed that the average visual scores were 0 ± 0 in the CU group, 
3.43 ± 3.35 in the AD-MCI group, and 6.31 ± 2.97 in the AD-D group 
(p < 0.001).

Complementary analyses were run in five composite 
subregions in the brain. There were greater average visual scores 
in the temporal regions, followed by the precuneus and parietal 
lobes, and lower visual scores in the frontal and occipital regions. 
The temporal region read positive (>0) most often (60.9%), 
followed by the parietal (47.8%), while the frontal, precuneus, 
and occipital regions read positive less often (all 45.7%). Figure 2 

FIGURE 1

This shows the representative [18F]Florzolotau PET images from the cerebellum to the vertex including levels of the temporal, parietal, frontal, 
precuneus, and occipital lobes of cognitively unimpaired normal control (CU), Alzheimer’s disease with mild cognitive impairment (AD-MCI), and 
Alzheimer’s disease with dementia (AD-D) using a designed color scale. The global visual scores of the CU, AD-MCI, and AD-D were 0, 2, and 9.

TABLE 1 General characteristics of study participants.

Characteristic CU (n = 12) AD-MCI (n = 20) AD-D (n = 14)
ANOVA ANCOVAa

p-value p-value

Age 64.6 ± 6.7 72.1 ± 4.5 71.1 ± 4.9 0.005 –

Female, n (%) 6 (50%) 13 (65%) 8 (57%) 0.699 0.697

Years of education 12.7 ± 4.7 9.4 ± 4.8 12.7 ± 4.1 0.065 0.156

Disease duration 0.0 ± 0.0 2.45 ± 1.73 3.86 ± 1.70 <0.001 <0.001

MMSE 28.7 ± 4.0 23.0 ± 3.2 20.7 ± 3.6 <0.001 <0.001

CDR 0.0 ± 0.0 0.5 ± 0.2 0.8 ± 0.3 <0.001 <0.001

CDR-sum of box 0.1 ± 0.4 2.3 ± 1.3 4.6 ± 1.6 <0.001 <0.001

Aβ-positive, n (%) 0 (0%) 20 (100%) 14 (100%) <0.001 <0.001

Global visual score 0 ± 0 3.43 ± 3.35 6.31 ± 2.97 <0.001 <0.001

Unless otherwise indicated, data are presented in mean ± standard deviation. CU, cognitively unimpaired; AD-MCI, Alzheimer’s disease with mild cognitive impairment; AD-D, Alzheimer’s 
disease with dementia; ANOVA, analysis of variance; ANCOVA, analysis of covariance; MMSE, mini-mental state examination; CDR, clinical dementia rating; Aβ, beta-amyloid.aCovariate 
adjusted for age.
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shows the regional visual score distribution of patients classified 
into each subgroup, by different readers, and the average of 
all readers.

Interobserver variation

The four readers had a high level of interobserver agreement 
(ICC = 0.880, 95%CI: 0.767–0.936) on the visual score, as determined 
by intraclass correlation coefficients [Shrout–Fleiss convention (2,1)]. 
The highest agreement was seen between reader 1 and reader 3 

(ICC = 0.972) and the lowest was between reader 2 and reader 4 
(ICC = 0.765, Table 2, Supplementary Table S1).

Visual score vs. quantitation

The average global visual score was significantly associated with 
global [18F]Florzolotau tau-PET SUVr (Pearson’s correlation 
coefficient, R2 = 0.815, p < 0.0001, Figure 3A). The association between 
the global tau-PET SUVr and the individual global visual score of each 
reader (Supplementary Figure S1) was also explored, showing that the 
correlations were also high (highest R2 = 0.8, lowest R2 = 0.733; all 
p < 0.0001).

When comparing quantitative tau-PET SUVr values in 
different regions of the brain, the highest SUVr values were in the 
temporal lobes and the lowest SUVr values were in the frontal 
lobe, which is consistent with the result of the visual score. 
Furthermore, the correlations between the average visual scores 
and the tau-PET SUVr in these five regions were investigated, and 
the results show a high correlation in all regions (frontal 
R2  = 0.737, precuneus R2  = 0.777, temporal R2  = 0.696, parietal 
R2 = 0.762, occipital R2 = 0.683; all p < 0.0001, Figures 3B–F). In 
addition, each reader’s visual score also displayed a moderate 
correlation with the calculated global SUVr as shown in the 
Supplementary Figure S1.

Visual score accuracy

All CU group subjects (100%) scored “0” compared to a minority 
of the AD-MCI (15%) and AD-D (8%) patients. Receiver operating 
characteristic (ROC) curve analyses (Figure 4) were used to determine 
if the visual score could: (1) distinguish the AD-D group from the 
other patients and (2) distinguish the CU group from the 
other patients.

An optimal cut-off score of 1.0 had a sensitivity of 82.4% and a 
specificity of 100% in differentiating CU patients from the other 
patients with the AD-spectrum, and the resulted area under the ROC 
curve (AUC) was 0.94. In comparison, the cut-off visual score of 4.0 

FIGURE 2

The heat map visualizing the average regional visual score rated by each reader (top 4 rows) in each clinical subgroup, and the mean score of the four 
readers (bottom row) in these regions. A clear pattern is visible where healthy controls in general tend to show lower scores while AD-D patients tend 
to show higher scores. Colors correspond to the score as shown in the right panel. CU: cognitively unimpaired subjects, n = 12; AD-MCI: Alzheimer’s 
disease with mild cognitive impairment, n = 20; AD-D: Alzheimer’s disease with dementia, n = 14.

TABLE 2 Interobserver reliability.

Comparison of ROC curve in identifying cognitively 
unimpaired subjects from other patients between each 
reader

A B AUC (A) AUC (B) p-value

Reader 1 Reader 2 0.9118 0.9191 0.8824

Reader 1 Reader 3 0.9118 0.9265 0.7454

Reader 1 Reader 4 0.9118 0.8113 0.1280

Reader 2 Reader 3 0.9191 0.9265 0.8787

Reader 2 Reader 4 0.9191 0.8113 0.1129

Reader 3 Reader 4 0.9265 0.8113 0.0758

Comparison of ROC curve in identifying AD-D patients 
from other subjects between each reader

A B AUC (A) AUC (B) p-value

Reader 1 Reader 2 0.8158 0.8426 0.7661

Reader 1 Reader 3 0.8158 0.8181 0.9815

Reader 1 Reader 4 0.8158 0.8125 0.9728

Reader 2 Reader 3 0.8426 0.8181 0.7856

Reader 2 Reader 4 0.8426 0.8125 0.7439

Reader 3 Reader 4 0.8181 0.8125 0.9548

ROC, receiver operating characteristic; AUC, area under curve; AD-D, Alzheimer’s disease 
with dementia.

https://doi.org/10.3389/fnins.2023.1148054
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Lin et al. 10.3389/fnins.2023.1148054

Frontiers in Neuroscience 06 frontiersin.org

had a sensitivity of 85.7% and a specificity of 78.1% in distinguishing 
AD-D patients from other patients within the AD-spectrum, resulting 
in an AUC of 0.83.

Visual score vs. clinical performance and 
other characteristics

There were moderate correlations between the visual scores and 
CDR (R2  = 0.271, p  < 0.001), and CDR-sum of box (R2  = 0.458, 
p  < 0.001) but mild correlation between visual scores and MMSE 
(R2 = 0.199, p = 0.002). There was no correlation between visual scores 
and other subject characteristics (Supplementary Table S2).

The correlation between the mean visual score from the four 
readers and the CDR-SOB is shown in Figure 5, while the correlation 
between the individual visual score of the four readers and the 
CDR-SOB is displayed in the Supplementary Figure S2. The visual 
scores of each reader showed high to moderate correlations with the 
CDR-SOB (highest R2 = 0.465, lowest R2 = 0.376; all p < 0.0001).

Discussion

Although amyloid and tau pathologies may start separately 
(Mungas et al., 2014; Jack et al., 2018), they are closely related to each 
other during the symptomatic stages of AD (Monsell et al., 2013). In 
this research, we  proposed a visual scoring scale from clinically 
obtained tau-PET scans for detecting the degree of tau accumulation 
in the brain.

The main result of this single-center study is that the visual 
inspection of [18F]Florzolotau tau uptake distribution can provide 
accurate diagnosis for differentiating AD pathology from cognitively 
unimpaired subjects. The results show that our visual technique for 
interpreting [18F]Florzolotau tau-PET is highly correlated with SUVr 
measurement and is related to clinical diagnosis. The mean visual 
scores were significantly different between the AD-D, AD-MCI and 
CU groups, indicating that the visual scoring scale can be sued to 
distinguish between these diagnostic groups.

We evaluated the performance of the visual scale against the 
quantitative SUVr method because the SUVr has been validated in 
various studies (Clark et al., 2012; O’brien et al., 2014; Joshi et al., 
2015; Harn et al., 2017). Following the previous studies, we found 
that the quantitative SUVr of AD-D patients was significantly higher 
than those of AD-MCI and the CU groups. When comparing the 
visual scale with the quantitative SUVr method, the visual scale 
demonstrated comparable diagnostic precision for identifying AD-D 
patients or cognitively unimpaired subjects from other patients. 
Specifically, a cut-off visual score of 4 could significantly differentiate 
the AD-D patients from the other patients, and a cut-off score of 1 
could distinguish the cognitively unimpaired subjects from the other 
(AD-MCI and AD-D) patients. The visual scale we proposed (global 
score) allowed the differentiation of cognitively unimpaired subjects 
from other patients with a sensitivity of 82.4% and a specificity of 
100%; and differentiated AD-D from other participants with 85.7% 
sensitivity and 78.1% specificity. The findings of our study suggest 
that [18F]Florzolotau tau-PET visual reads are feasible and can 
identify tau pathology with high accuracy, supporting its translation 
to clinical settings as an aid in the assessment of tau accumulation 

FIGURE 3

(A) This plot displays correlations between the mean global visual score of 4 readers and global cortical standardized uptake value ratio (SUVr) for the 
groups of CU (red), AD-MCI (green) and AD-D (purple). The correlations of the mean regional visual score of 4 readers and regional cortical 
standardized uptake value ratio (SUVr) are shown in (B)–(F) for temporal, parietal, precuneus, frontal and occipital lobes, separately.

https://doi.org/10.3389/fnins.2023.1148054
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Lin et al. 10.3389/fnins.2023.1148054

Frontiers in Neuroscience 07 frontiersin.org

in the brain. These preliminary findings suggest that visual reading 
could detect tau aggregation in different brain regions, supporting 
the value of our visual scoring tool in capturing the extent of 
tau burden.

The AUC of our visual scores for distinguishing AD-D from other 
patients was 0.834, compared to the AUC of 0.949 reported by a recent 
[18F]Florzolotau ([18F]APN1607) study using the SUVr method 
(Zhang et al., 2021). However, it is important to note that the purpose 
of that study was to separate AD with dementia from the health 
controls, not to distinguish AD with dementia from other patients 
including AD-MCI.

While each reader’s experience and potential bias can unavoidably 
impact visual interpretation, we  found an acceptable inter-reader 
agreement (ICC ≥ 0.77), suggesting that the visual scale may be reliable 
and useful in a clinical setting.

In our previous AD study (Hsu et  al., 2020), the clinical 
performance and quantification of [18F]Florzolotau tau accumulation 
showed a close relationship. In our current results, the global visual 
scores in [18F]Florzolotau tau-PET images from AD-associated regions 
showed significant positive correlations with the CDR-SOB scores 
(p < 0.0001), demonstrating that the increasing tau burden identified 

FIGURE 4

This shows the ability of the average global visual score to (A) distinguish CU (n = 12) from all other participants (n = 34), and (B) distinguish AD-D 
(n = 14) from all other participants (n = 32), The ability of each reader’s global visual score is displayed in (C) to distinguish CU (n = 12) from all other 
participants (n = 34), and in (D) to distinguish AD-D (n = 14) from all other participants (n = 32). CU: cognitively unimpaired subjects; AD-D: Alzheimer’s 
disease with dementia.

FIGURE 5

Correlations between the mean global visual score of 4 readers and 
CDR-SOB for the groups of CU (red), AD-MCI (green) and AD-D 
(purple). CDR-SOB: clinical dementia rating—sum of box. CU: 
cognitively unimpaired subjects; AD-MCI: Alzheimer’s disease with 
mild cognitive impairment; AD-D: Alzheimer’s disease with 
dementia.
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by the visual reading score closely correlated with decreasing cognition 
and increasing disease severity.

Notably, from a clinical point of view, a visual scale has several 
advantages compared to a quantitative method. The quantitative 
method can be  time-consuming, and the actual value can vary 
depending on many factors, such as the ROI configuration, tau-PET 
and CT data processing, and the essential software. Moreover, the 
quantitative method may require specialized expertise and equipment, 
which might only be  available in a medical center, limiting its 
accessibility and practicality in routine clinical settings. In contrast, a 
visual rating scale can be  implemented as a fast-diagnostic tool 
adjunct to the clinical tau-PET scan evaluation without additional 
complex processing.

This study shows strong correlations between mean visual score 
and global and regional SUVr values. For comparison, the correlation 
analysis between global/regional SUVr values and CDR-sum of box 
were illustrated in the Supplementary Table S7 with good correlations 
of global and regional SUVr values with CDR-SOB. As compared 
with the mean visual score result as in Figures 3, a slightly higher 
correlation with CDR-SOB than the SUVr result (R2 = 0.458 for the 
global visual score and R2 = 0.348 for the global SUVr, respectively). 
In addition, the ROC analyses for the global SUVr were also 
performed and the results were shown in the Supplementary Figure S6 
with the AUC of 0.985 for differentiating CU from other patients and 
0.783 for AD-D from other subjects. As compared with the result for 
the mean visual score in Figure 5, SUVr performs slightly better than 
the proposed visual scoring method in classifying CU from other 
subjects (AUC = 0.985 for SUVr and AUC = 0.941 for visual score), 
while the visual score result performs slightly better in classifying 
AD-D from others (AUC = 0.783 for SUVr and AUC = 0.834 for visual 
score). From the above results and a small number of cases, although 
the proposed visual reading method seems to generate compatible 
results with the semiquantitative SUVr, further research with a larger 
sample size is needed to determine whether this method conveys 
prognostic information. Moreover, longitudinal data should 
be collected to evaluate the prognostic value of the visual scale for the 
tau tracer of [18F]Florzolotau compared to quantitative methods.

The applications of tau PET in differentiating AD-D from other 
neurodegenerative cognitive disorders such as frontotemporal 
dementia (FTD) and dementia with Lewy bodies (DLB) have been 
explored before (Gomperts et al., 2016; Ossenkoppele et al., 2018; 
Kroth et al., 2019; Tsai et al., 2019; Mak et al., 2021). Investigations of 
tau PET in FTD patients using [18F]Florzolotau (or [18F]PM-PBB3) 
have been reported as well (Su et al., 2020; Tagai et al., 2021). Thus, 
due to the capability of detecting both 3R and 4R tauopathies, the tau 
PET [18F]Florzolotau may play a role in the differential diagnosis of 
other neurodegenerative cognitive disorders such as FTD and 
DLB. This article is a preliminary study of a visual scoring system to 
evaluate its reliability and association with disease severity. To expand 
on these findings, we plan to recruit non-AD cases to determine if this 
scoring system can provide more information and help classify 
Alzheimer’s disease continuum and other dementia patients.

Our analysis also revealed higher visual scores in certain 
sub-regions, such as the lateral temporal regions, indicating that these 
areas may be more vulnerable to tau accumulation associated with 
amyloid. The Braak hypothesis was generally supported by the 
observed patterns of visual scores in the AD-MCI group. As the 
disease progressed in the AD-D group, the burden of tau was elevated 

in all regions. However, we did notice the existence of different uptake 
pattern from the typical temporoparietal distribution among the 
AD-MCI and AD-D groups. Please see the heatmap in the 
Supplementary Figure S4 for the heatmap result where some subjects 
are with atypical uptake patterns. Moreover, according to the 
pathological development of Alzheimer’s disease, there may be some 
areas that are affected by tau earlier in the course of the disease before 
clinical symptoms appear. With further research, elevated visual 
scores of tau deposition in these regions may help identify patients at 
high risk of Alzheimer’s disease.

The PET images were scanned from two different scanners, and 
to reduce the scanner effect, we  have performed the data 
harmonization processing as in (Joshi et  al., 2009) to achieve a 
unified resolution for images from the two scanners. The main goal 
of this study is to propose a visual reading method for [18F]
Florzolotau PET imaging. A thorough study of the scanner effect 
needs to be  conducted using the same subjects scanned from 
different scanners or using a large sample size. Nevertheless, as 
indicated in the Supplementary Tables S4–S6, the number of subjects 
scanned with those two different scanners per group was not evenly 
distributed, and there are more cases in the AD-MCI group scanned 
from the Discovery MI PET/CT system, while slightly more cases in 
the AD-D group using the Biograph mCT PET/CT system. However, 
the patient characteristics of the two scanners did not show 
significant differences in each subject group 
(Supplementary Tables S4–S6). Similarly, there were no significant 
differences in visual score and SUVr between two scanners in the 
same subject group. In particular, for the CU groups scanned from 
these two scanners, compatible values of the mean visual scores and 
global and regional SUVr’s were observed.

Some limitations in the current study must also be noted. First, 
the sample size was relatively small, which can minimize the 
statistical power of the visual reading score for the classification of 
AD-D/AD-MCI/CU patients. The second limitation of this study 
is that the final diagnosis was only confirmed by clinical evaluations 
without pathological confirmation of amyloid or tau positivity for 
AD diagnosis. Third, although the age selection criteria were set 
the same for all groups in our study, the CU subjects were still 
younger than the AD-D and AD-MCI patients. We  have also 
included age as the covariate to compare the cognitive performance 
among the three subject groups in Table 1, and the difference in 
cognitive results remained significant. As age is one of the major 
risk factors for Alzheimer’s disease, the visual reading scoring 
method for [18F]Florzolotau proposed in this study has to 
be validated in a larger sample size with wider age range before 
general application. Further, due to the lack of follow-up for 
observing changes in dementia status over time, it is impossible to 
know whether the visual scoring system is also related to clinical 
deterioration over time.

However, our study’s strengths include using better color scales 
to visually distinguish areas with the accumulation of tau. The color 
scale we used can quickly switch between the two colors, so readers 
can easily and immediately see which areas have high tau protein 
accumulation. Our tau-PET visual interpretation method was 
developed using improved color scales and incorporates a visual 
rating composite score, which has shown superior performance in 
classifying AD spectrum patients compared to traditional visual 
scoring methods.
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Conclusion

In conclusion, our study shows that the proposed visual scale of 
[18F]Florzolotau ([18F]APN1607) tau-PET is strongly associated with 
SUVr quantification and clinical diagnosis, suggesting that the visual 
scale of tau-PET is a robust and clinical application to distinguish AD 
with dementia patients from other older adults with cognitive decline. 
Visual interpretation of tau-PET imaging can reflect quantitative tau 
measurements evaluated by PET, thus representing another promising 
alternative to the quantitative PET method in clinical settings. The 
inter-reader reliability of our visual scoring is strong, indicating that 
the proposed visual method is reproducible and therefore potentially 
for clinical application to evaluate tau concentrations. Future studies 
should evaluate the potential and limitations of tau-PET and the 
proposed visual reading approach by using longitudinal PET and 
cognitive data, and the prognostic role of this method should 
be further clarified in clinical settings.
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